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Summary. Accurate n e w  C 6 dispersion energy coefficients, and their dependence 
on the diatom orientation and bond length, are calculated for molecular hydro- 
gen interacting with an atom of  H, Li, Be, He, Ne, Ar, Kr or Xe. They 
are generated from accurate a b  in i t io  pseudo dipole oscillator strength distribu- 
tions (DOSD) for H2, H, He and Be, and reliable semiempirical ones for Li, Ne, 
Ar, Kr and Xe. Compact power series expansions for the diatom bond- 
length dependence of  these coefficients, suitable for incorporation into represen- 
tations of  full potential energy surfaces for these systems, are determined and 
assessed. 
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1. Introduction 

The dominant contribution to the long-range interaction between non-polar 
species is the induced dipole-induced dipole or London dispersion energy. In 
second-order perturbation theory, neglect of  electron overlap between the inter- 
acting species leads to a simple inverse-power form for this energy, C6/R 6, where 
C6 is a constant determined by the properties of  the isolated component species 
and R is the intermolecular distance [1, 2]. However, in spite of  its substantial 
influence on many experimental properties, competition from higher inverse- 
power contributions to the long-range potential and the "damping" effect of  
non-negligible electron overlap make it difficult to determine accurate values of  
these coefficients from experimental data [3-5]. At the same time, the quality of 
potential energy function determined from fits to experimental data, particularly 
for weak Van der Waals interactions, can be as sensitive to the form chosen for 
the potential as to the actual details of  fit. Thus, the determination of  accurate 
theoretical C6 coefficients for incoporation into model potentials is a matter of 
considerable importance and urgency. 
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A dramatic illustration of this need for accurate theoretical C6 coefficients is 
provided b y  the history of the experimentally determined potential energy 
surfaces for the molecular hydrogen-rare gas systems. The first empirical three- 
dimensional potential energy surface for this (or any other) atom-diatom Van 
der Waals system was based on Lennard-Jones (12,6) radial strength functions 
whose parameters were determined [6] from least-squares fits to discrete spectro- 
scopic data [7]. While that potential function accounted accurately for all of the 
infrared transition frequencies for both H2-  and D2-Ar, as well as for indepen- 
dent elastic differential scattering cross-section measurements [8, 9], its predic- 
tions were in marked disagreement with the observed "glory" structure in the 
low energy integral scattering cross-sections [10]. However, when a more flexible 
potential energy surface which incorporated a bond-length dependent and an- 
isotropic theoretical C 6 term was fitted to those same spectroscopic data, yielding 
the same overall quality of fit [9], the more realistic radial form imposed by the 
theoretical C6 coefficients led to virtually exact agreement with those integral 
cross sections [ 11, 12]. 

In general, the second-order induced dipole-induced dipole dispersion energy 
for the interaction between an S-state atom and a homonuclear diatomic 
molecule in a ~ electronic state may be written as [ 1, 2]: 

E(a2)(R, r ,  0) = - C 6 ( r  , O ) / R  6 = - [ C ° ( r )  -3 !- C2(r)P2(cos O)]/R 6 (1 )  

where r is the bond length of the diatom, 0 the angle between the diatom axis 
and a vector from its centre of mass to the atom, and P2(cos 0) the usual 
second-order Legendre polynomial. The present paper addresses the problem of 
determining and representing C6°(r) and C2(r) for the interactions of molecular 
hydrogen with rare gas atoms and with atomic H, Li and Be. 

Estimates of these coefficients computed from semiempirical pseudo dipole 
oscillator strength distributions (pseudo-DOSD) were reported by Victor and 
coworkers [ 13] for ground-state H2 interacting with a variety of atoms, including 
all of those treated here. For these same interactions (excluding H2-Be), 
Langhoff et al. [14] reported bounds for C O and estimates of C62 calculated from 
Pad6 approximants to dynamic polarizabilities based upon semiempirical Cauchy 
moments of the DOSD. However, neither of those studies treated the depen- 
dence of the dispersion coefficients on the bond length of the diatom. That was 
first done by Meyer and coworkers [15, 16] (see also Thakkar [17]), who 
calculated ab initio values of the H2-He  and H2-H2 dispersion coefficients for 
three different values of the H2 bond length, and then performed an approximate 
average over the zero-point motion of the diatom. 

In an initial effort to obtain a realistic diatom bond-length dependence for the 
H2-rare gas dispersion coefficients, LeRoy et al. [9] approximated their linear 
stretching-dependence by those of the spherically averaged polarizability ~ and 
polarizability anisotropy As of diatomic hydrogen: d ln(C°) /dr  = d ln(~)/dr and 
d ln(C~)/dr = d ln(Ae)/dr.  The assumption that those logarithmic derivatives did 
not depend on the nature of the interaction partner was clearly only a first 
approximation, and later work showed that for rare gas partners, the first 
derivatives obtained in that way are ca. 50% too large [12, 18]. This motivated 
Thakkar [20] to calculate bounds to C o and C~ for atom + H2 interactions as a 
function of the H2 bond length, using ab initio DOSD moments for H2, H, and 
He, and semiempirical DOSD for other rare gas and alkali atoms. Those values 
[20] were then fitted to convenient r-expansions and incorporated into expressions 
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for the overall potential energy surfaces for the H2-rare gas systems [12, 18, 
19, 21] which have since found widespread use. 

In subsequent work, Tang and Toennies [22] combined Meyer's ab initio 
pseudo-DOSD for H 2 [15] with a semiempirical pseudo-DOSD for Ne to 
calculate C6 ° and C 2 for H2-Ne at three values of the H2 bond length. Similarly, 
Matias and Varandas [23, 24] used Meyer's pseudo-DOSD for H2 and ab initio 
and semiempirical pseudo-DOSD for a variety of atoms to compute C O and C~ 
for atom + H2 interactions at three different H2 bond lengths. They also gener- 
ated estimates of C O for atom _4- H 2 interactions at a range of H2 bond lengths 
using simple Unsold and Kirkwood approximations based upon ab initio results 
for H2, H and He, and semiempirical data for the other atoms [23, 24]. 

The present paper describes an improved version of the unpublished, al- 
though extensively used [12, 18, 19, 21], work of Ref. [20]. In particular, C O and 
C 2 coefficients for the interactions of H2 with H, Li, Be, He, Ne, Ar, Kr and Xe 
are determined as functions of the H2 bond length. Section 2 presents these 
results, together with a description of the methodology used to generate them. 
Section 3 then describes fits to these results to obtain compact analytic expres- 
sions which incorporate the H2 bond-length dependence of these coefficients. 

2. Dispersion coefficients for atom + H 2 interactions 

2.1. Theory 

The C 6 coefficient for the interaction between an S-state atom and a Z-state 
diatomic molecule with bond length r may be written in two forms: 

C6(r, 0) = C°(r)[1 + r(r)P:(cos 0)] = C°(r) + C~(r)P2(cos 0) (2) 

where F(r)= C2(r)/C°(r). It is convenient [13-17, 25] to express the isotropic 
and anisotropic components of the dispersion coefficient, C°(r) and C62(r), in 
terms of the components C~ll°}(r) and C~lll}(r) as: 

C°(r) = C~ llO}(r) + 2C~1"}(r) (3) 

and 

C 2 (r) = C~ 11°}(r) - C~ lll}(r) (4) 

For each value of the diatom bond length r, the isotropic or spherically-averaged 
dispersion coefficient may be expressed in terms of the frequency-dependent 
isotropic dipole polarizabilities of the diatom (here H2) and the atom (denoted 
A) as [25-27]: 

c o =  3_ ~o ® C~H2 (i(.0)aA (ic0) dco (5) 

where i = ~ - - 1 .  Similarly, for C~lm}(r) and C~111}(r) one may write: 

fo C~--- -1 ~2(io))o~A(io))dc,) for x = {110} or {111} (6) 

110} 111} where ~ 2  and ~ 2  are, respectively, the m = 0 and m = 1 components of the 
dynamic dipole polarizability of the H 2 diatom [13-17, 25]. The dependence of 
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the dispersion coefficients on the diatom bond length clearly arises from the 
bond-length dependence of these dynamic polarizabilities. In the present work, 
the requisite dynamic polarizabilities are approximated by pseudo-spectral ex- 
pansions of the form: 

N 

= Z gj/[o } + 21 (7) 
j = l  

in which the pseudo-oscillator strengths gj and the pseudo-excitation energies oj 
define the underlying pseudo-DOSD. 

2.2. The pseudo dipole oscillator strength distributions 

In the calculations reported below, nearly exact ab initio pseudo-DOSD were 
used for the H and He atoms. In particular, the 21-term pseudo-DOSD (i.e., Eq. 
(7) with N = 21) used for H is based on exact moments of the true DOSD, and 
yields a value for C 6 ( H - + - H )  which is accurate to 15 significant figures [28]. 
Similarly, the 30-term pseudo-DOSD used for He was obtained by a variational 
perturbation calculation using Slater-Hylleraas geminals, and is known to yield 
a value for C6(He + He) which is accurate to five significant figures [29]. 

For the Be atom, a reasonably accurate ab initio pseudo-DOSD was obtained 
using the relation: 

N 

E gjo,) = S(k) (8) 
j = l  

for selected values of k. The 
DOSD, defined by: 

S(k) = 

S(k)'s appearing here are moments of the true 

fj ) + (9) 
j = l  c 

where fj and ej are the dipole oscillator strength and excitation energy for the 
transition between the ground and j th discrete excited state, df/de is the density 
of the dipole oscillator strength for transitions into the continuum, and E~ is the 
continuum threshold energy. In the present work, the parameters defining a 
three-term pseudo-DOSD for Be were determined by applying Eq. (8) to ab initio 
S(k) values for - 3  ~< k ~< 2 obtained by a second-order polarization propagator 
calculation using a coupled cluster double excitation ansatz [30]. The value of 
S ( - 2 )  used for Be is in excellent agreement with other high-accuracy ab initio 
calculations of its static dipole polarizability [31]. 

The ten-term semiempirical pseudo-DOSD used for Li [32] and for Ne, Ar, 
Kr, Xe [33] are expected to have accuracies of about 1%. Static dipole polariz- 
abilities calculated from these semiempirical pseudo-DOSD are, respectively, 
0.55%, 0.79%, 1.4%, 1.7% and 2.2% lower than the latest ab initio values for Li 
[34], Ne [35], Ar [36], Kr [37] and Xe [37]. An analysis of the residual errors in 
the calculations for Kr and Xe suggests that the ab initio polarizabilities have 
uncertainties of about 1% as well [37]. Thus, the pseudo-DOSD and ab initio 
polarizabilities agree within the mutual uncertainties. The situation is not alto- 
gether satisfactory because the pseudo-DOSD values are systematically lower 
than the ab initio ones, but we have little choice but to use ihe former. 



c6 coefficients for H 2 interacting with H, Li, Be and rare gas atoms 61 

To obtain pseudo-DOSD for H2 at a range of bond lengths, we began with 
a compilation of ab initio oscillator strengths, excitation energies, and of the 
DOSD moments S(k) for - 2  ~< k ~< 2 [38, 39]. This compilation is based exclu- 
sively upon calculations employing wave functions constructed from James-  
Coolidge geminals [38, 39]. The values in the compilation are expected to be of 
very high accuracy, except for S(2) at r = 3.8 and 4.0 a.u., for which an 
extrapolation was necessary [38]. In addition, values of S ( - 3 )  for H2 as a 
function of its bond length have been obtained by combining the compilation 
mentioned above with a novel sum-rule function which incorporates both the 
high-energy and resonance behaviours of the true DOSD [38, 39]. This compila- 
tion and set of S ( -  3) values were then used to generate pseudo-DOSD for H2 
in the manner described below. 

Three different isotropic pseudo-DOSD were used for H2 at each bond 
length. The first two terms of each one were defined by the true oscillator 
strengths and excitation energies for vertical transitions between the ground and 
the two lowest discrete excited states of H2. A four-term pseudo-DOSD, referred 
to as U, was then obtained by requiring it to also reproduce the S(k)'s for 
- 2 ~< k ~< 1. Similarly, a five-term pseudo-DOSD, referred to as L, was obtained 
by requiring it to reproduce S(k) for - 2  ~< k ~< 2 and the true excitation energy 
for a transition between the ground and the third discrete excited state. Finally, 
another five-term pseudo-DOSD, referred to as E, was obtained by requiring it 
to reproduce S(k) for - 3  ~< k ~< 2. For the anisotropy, three-term longitudinal 
and transverse pseudo-DOSD's were obtained for H 2 by requiring them to 
reproduce the oscillator strengths for transitions from the ground to the lowest 
2; and / /exc i ted  states, respectively, the excitation energies for the transitions 
from the ground to the two lowest ~ a n d / 7  excited states, and the {111} and 
{110} components of the moments S(k) for k = 0, - 1 ,  - 2 .  

2.3. Results 

Table 1 presents three different values of C O for each atom + H 2 interaction, at 
sixteen H 2 bond lengths ranging from r = 1 to 4 a.u. The values with superscripts 
UB and LB, respectively, were obtained with the U and L pseudo-DOSD for H2, 
while the third value was generated using the E pseudo-DOSD for H2. The U, 
and L pseudo-DOSD were constructed in a manner which would cause them to 
yield rigorous upper and lower bounds on C O if the atomic pseudo-DOSD were 
exact [40-42]. 

The condition that the atomic pseudo-DOSD be exact is essentially satisfied 
for the hydrogen and helium atoms, so our bounds for the H 2 - H  and H2-He  
isotropic C6 coefficients may be considered rigorous to the numbers of digits 
cited. For the other interactions, the atomic pseudo-DOSD have uncertainties 
of about 1% and the bounds are not rigorous at all. The results obtained with 
the E pseudo-DOSD should be the best, since they use the largest amount of 
H2 data; however, the lower bound [40, 42] character of this pseudo-DOSD 
is nullified because we used approximate values [38, 39] of S ( - 3 ) .  On 
the other hand, it is satisfying to note that these E-based estimates always 
lie between the (non-rigorous) "bounds", and that they also agree well 
with estimates (not shown) obtained from these bounds using the generalized 
mean technique [42]. Moreover, interpolation over these "best-estimate" results 
yields values of C O and F for r = 1.28, 1.449 and 1.618 a.u. which agree to 
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Table 2. C 6 coefficients for atom + He systems, calcu- 
lated as described in Sect. 2.2, expressed in atomic units 

System C6/a.u. 

He-H 2.821 
He-He 1.461 
He-Li 22.49 
He-Be 12.92 
He-Ne 3.032 
He-Ar 9.551 
He-Kr 13.42 
He-Xe 19.57 

better than 0.45% and 0.003 (or 2.9%), respectively, with values from Table 2 of 
Ref. [23]. 

3. Analytic representation of the angle and bond-length dependent C6 coefficients 

3.1. General 

The previous section has presented upper and lower bounds on the values of  
C°(r) for a range of  values of r, together with "best estimates" of  both this 
quantity and of F(r) at each H2 bond length. The problem addressed here is that 
of  devising accurate and compact representations of  these coefficients for incor- 
poration in overall potential energy surfaces for these systems. 

In previous work [6, 9, 12, 19, 21], the diatom-stretching dependence of  the 
C°(r) and C2(r) coefficients for the Hz-rare gas systems was represented by power 
series expansions in the Dunham coordinate ~ = ( r -  ro)/ro: 

kmax 
C~(r) = ~ ~kc~'k (10) 

k = 0  

where r0 is a suitably chosen reference length. Another possible choice for the 
expansion variable is one proposed by Ogilvie [43], ~ = (r - ro)/(r + to), which is 
attractive because it maps the entire range of diatom internuclear separations 
from r = 0 to ~ onto the finite range ( =  - 1  to -{-1. The practical utility of  
these two variables will be compared below. Note that in all cases considered 
herein, the reference length r0 is defined as the expectation value of r for the 
ground vibration-rotation state of H2, r0 = 0.7666393 ,~ [44, 45]. 

In the limit when r ~ 0, the electronic structure of an H2 molecule becomes 
identical to that of a He atom. As a result, in this "collapsed diatom limit" the 
atom + H2 interaction potentials become identical to the corresponding one- 
dimensional atom + He potential energy curves. In the present context, this 
means that as r -~0 ,  the C°(r) values must approach the C6 coefficient for that 
atom interacting with He, while C~(r) must approach zero. LeRoy and Carley 
used the analytic form of Eq. (10) with kmax--3 to represent a less-accurate 
earlier set of C6(r, 0) values [20], and incorporated the resulting C~ 'k expansion 
coefficients into their diatom-stretching dependent H2-rare gas potential energy 
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surfaces [12, 18, 19]. They also introduced the use of collapsed diatom limit 
constraints for imposing the correct r ~ 0 behaviour, in order to extend the range 
of diatom bond-lengths over which their interaction potentials were valid. 
Following their approach, we shall obtain C6~(r) functions which represent 
accurately the results presented in Table 1 and incorporate (see below) this 
physically-correct collapsed diatom limit behaviour. 

3.2. The least-squares fits 

We have performed least-squares fits of the best-estimate C°(r) and 
C62(r) = C°( r )x  F(r) values from Table 1 to power series in the expansion 
variables ~ and ~, while constraining the resulting functions to satisfy the 
collaPsed diatom limit described above. For the isotropic terms C°(r), this 
constraint was implemented by simply including the C6 coefficient for the 
corresponding atom + He interaction as a ~ = - 1  or ~ = - 1  point in the data 
set. The C6(atom + He) coefficients used for this purpose are listed in Table 2; 
they were computed from Eq. (5) using the atomic pseudo-DOSD discussed in 
Sect. 2.2, with the dynamic polarizability of Ha replaced by that of He. For the 
anisotropic (2 = 2) dispersion coefficients, the collapsed diatom limit constraint 
takes on the form: 

kmax 
C62(¢ = - l) = C62(~ = - 1) = Y, ( - 1)kC~ ,k - 0 (1 1) 

k=o 
This allows the leading coefficient of the power series expansion to be expressed 
in terms of the others: 

kmax 
c6:,°= ,k (12) 

k = l  

so that only kmax of these coefficients are really independent parameters. 
As in any least-squares fitting procedure, each datum was weighted by the 

squared inverse of the associated uncertainty. For the isotropic components of 
the interaction between H2 and H or He, the calculations are highly accurate, so 
the differences between the upper- and lower-bound values given in Table 1, 
[C °'UB- C°'zs], are believed to provide realistic estimates of the uncertainties. 
However, the results for H2 interacting with the other atoms are less accurate, 
and more realistic estimates of the uncertainties in those C°(r) values are believed" 
to be ca. 1% of the best estimate for the given coefficient. Moreover, since the 
S(2) moments for H2 at the bond lengths r --- 3.8 and 3.0 a.u. were obtained by 
extrapolation, the uncertainties associated with C6°(r) at these two distances are 
set at twice the values which would have been assumed otherwise (i.e., 

0 UB O,L 2 × [C6' - C6 n] for H and He, and 2% for the others). Finally, the uncertain- 
ties in the values of C6(atom + He) which define the C°(r = 0) limits of the 
atom + H2 interactions were assumed to be equal to the smallest of the uncer- 
tainties associated with the other C°(r) values for that case. 

While we have no direct way of knowing the uncertainties in the C62(r) (or 
F(r)) values, estimates may be obtained using the interrelationships provided by 
Eqs. (3) and (4) and the definition F(r). In particular, if we consider the C°(r) 
and C2(r) values at any given r to be functions of C~ll°}(r) and C~lll}(r),  and the 
uncertainties in the latter to be uncorrelated, the uncertainties in the former may 
be expressed as [46]: 
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~L¢3C~Ii°}( r)jT dC6~(r) _~]2 LOc~Hi}( r)[- aCe(r) q2~ i/2 u(C~(r)) = u(C~H°l(r)) + u(C~H~}(r)) I ~ (13) 

for 2 = 0  and 2. The partial derivatives appearing in Eq. (13) are readily 
obtained from Eqs. (3) and (4), and introduction of the assumption that 
u(C~ ll0}(r)) ~ u(C~lll}(r)) then yields the relationship: 

u(C~(r)) = x / ~ u ( C ° ( r ) )  (14) 
In the fits reported below, the uncertainties used to weight the values of C62(r) 
obtained from the results in Table 1 were based on Eq. (14) and the C°(r) 
uncertainties described above. 

Our final concern here is the selection of a criterion for determining the 
number of terms which should be included in the power series expansions of Eq. 
(10). To this end, we introduce a quantity called the "dimensionless standard 
error" or DSE:  

"11/2 

where N a is the number of data being fitted, N e the number of parameters being 
varied, Y~ (obs) the ith "experimental" datum, u(Y~) its uncertainty, and Y~ (ca&) 
is the value of it calculated from Eq. (10). A D S E  value ~ 1 means that on 
average, the discrepancies between the input data and the predictions of the 
model are smaller than the uncertainty in the former, and hence that this model 
provides a satisfactory representation of those data. This criterion is used to 
determine the smallest values of kma x sufficient to provide accurate power series 
representations of the various C~(r) functions. 

3.3. Results 

We begin by examining the question of whether the Dunham coordinate ~ or the 
Ogilvie coordinate ~ is the more convenient variable to use in the power series 
expansion of Eq. (10). Fits of the calculated C°(r) and C~(r) values for H2-Ar  
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Fig. 1. DSE values 
for fits of power series 
of order km~ x in the 
variable ~ (square 
points joined by solid 
lines) or ~ (triangular 
points joined by 
broken lines) to the 
H2-Ar CrY(r) values 
of Table 1 
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to power series in ( and ( for a range of values of k . . . .  subject to the collapsed 
diatom limit constraint of Eq. (12), yielded the D S E  values shown in Fig. 1, 
while plots of the resulting polynomials are seen in Figs. 2 and 3. Figure 1 clearly 
shows that when the Ogilvie coordinate ( is used (triangular points joined by 
dashed lines), much higher values of kma x are required to achieve good fits. 
Moreover, Fig. 3 shows that expansions in ( are much more likely to show 
implausible oscillations in the broad interpolation region between the calculated 
values at r = 1 a.u. (~ = -0.31 or ( = -0.18)  and the collapsed diatom limit at 

= ( = - 1. Similar results were obtained for other systems. Thus, the Dunham 
coordinate ~ = (r - ro)/ro is clearly the better variable for polynomial expansion 
representations of the C6~(r) functions. 

For a range of kmax values, the best-estimate results for all of the cases 
considered in Table 1 were fitted to the ¢ expansions of Eq. (10), while applying 
the collapsed diatom limit constraints described above. The D S E  values for those 
fits are plotted vs. kmax in Fig. 4, while plots of the associated polynomials for 
three representative cases are compared with the input C6~(r) values in Figs. 2, 5 
and 6. In each case, the optimum polynomial representation corresponds to the 
smallest value of km~x for which the D S E  < 1. 

The results in Fig. 4 show that these systems may be divided into three 
groups: (i) H 2 with H and He, (ii) H 2 with Ne, Ar, Kr and Xe, and (iii) H2 with 
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Fig. 3. As in Fig. 2, 
for polynomials in 

Li and Be. For systems in group (ii), cubic functions of ¢ (corresponding to 
kmax = 3) yield D S E  values less than 1 for both 2 = 0 and 2. In contrast, the 
relatively small uncertainties associated with the calculated C6~(r) values for 
H 2 -H  and He mean that adequate polynomial representations are not obtained 
until kmax = 5. The group (iii) systems are intermediate cases in which km,x = 3 
suffices for the C°(r) expansion, but km,x = 4 is required for C2(r). 

Figures 2, 5 and 6 show that the k m a  x = 3 and 4 curves for 2 = 2 all have 
negative slopes at the collapsed diatom limit point ¢ = - 1 ,  and that the 
c o r r e s p o n d i n g  k m a  x = 5 curves have an inflection point in the broad small-r 
interpolation region. Adoption of the k m a  x = 6 polynomials would eliminate this 
somewhat unlikely behaviour. However, it would significantly increase the 
complexity of our expressions for C2(r), and since we know of no physical 
arguments forbidding a 'local maximum or minimum in this region, we prefer the 
more compact (small kmax) representations suggested by Fig. 4. 

In general, the numbers of digits used to represent parameter values deter- 
mined from a least-squares fit should be the minimum number sufficient to 
"adequately" represent the input data. Moreover, the requisite numbers of 
significant digits may be further reduced if one exploits the interparameter 
correlation by using a sequence of additional fits, in each of which one additional 
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parameter is held fixed at the rounded-off value suggested by the preceding fit 
[47]. We have used a successive-rounding scheme of this type to determine our 
final recommended values for the expansion parameters C6 ~'k of Eq. (10) [48]. The 
resulting recommended values of these expansion coefficients for all of the 
systems of interest are presented in Table 3. Note that although the results being 
fitted to (see Table 1) were originally calculated in atomic units, prior to 
determining these expansion coefficients they were converted to the units 
cm-1 A6 more commonly used for representing model potential functions (with 
conversion factors taken from Ref. [49]). 

4. Concluding remarks 

We report accurate new values of the isotropic and P2(cos 0) anisotropy disper- 
sion coefficients for diatomic hydrogen interacting with H, Li, Be and the rare 
gases, which explicitly take account of their dependence on the diatom bond 
length r. Compact polynomial representations of these r-dependent coefficients 
were also determined, in order to facilitate their incorporation in three-dimen- 
sional model potential energy surfaces for these systems. 
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2.0 

Fig. 5. For H2-He, as in 
Fig. 2 

The expansions obtained on substituting the coefficients of Table 3 into Eq. 
(10) accurately represent the diatom-stretching dependence of the C6 coefficients 
for H2 interacting with a range of partners. However, when calculating spectro- 
scopic properties or collision cross sections for these systems, one usually needs 
to know the diagonal or off-diagonal vibrationally-averaged values of these 
coefficients. Such averages may be readily generated by replacing the powers of 

in Eq. (10) by the associated diagonal or off-diagonal vibrational matrix 
elements of Ck for the vibration-rotation states in question. For example, the 
vibrationally-averaged C6 value associated with the interaction of H2 in vibra- 
tion-rotation state (v, j )  with a chosen atom may be written as: 

k m a x  

C~6(v,j) = ~ <v, jI~k[v,j>C~ 'k (16) 
k = 0  

Accurate values of the requisite expectation values of powers of ¢ are readily 
obtained from tabulated results for all vibration-rotation states of all six isoto- 
pomers of H 2 [44]. 

A comparison of the utility of the Dunham (4 = [ r -  ro]/ro) and Ogilvie 
(~ = [ r -  ro]/[r + ro]) stretching coordinates in power series representation of 
these C~6(r) values shows that the latter are much less useful than the former. The 
reason for this seems to be the fact that mapping the region from ro to oo onto 
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the finite range [0, 1] attempts to compress too broad a range of  behaviour onto 
a narrow interval, and hence requires the use of much higher-order polynomials 
than desired. In our case, this also gives rise to implausible oscillations of the 
resulting C2(r) functions at small values of ( (see Fig. 3). Thus, we conclude that 
at least for systems involving molecular hydrogen, the Ogilvie parameter ( is 
much less useful than the traditional Dunham parameter ~ in providing conve- 
nient and stable representations of  the internal bond-length dependence of  
intermolecular potential energy surfaces. 

While the present paper has addressed the problem of  determining and 
representing stretching-dependent C6 dispersion coefficients for a variety of 
H a + atom systems, they are, of  course, only one component of  the overall 
potential energy surfaces for these systems. Unfortunately, it is much more 
difficult to generate analogous theoretical estimates of  contributions such as the 
higher-order inverse-power terms in the long-range potential, the short-range 
repulsion, or even the electron overlap induced damping of the R - 6  dispersion 
term. The higher-order and short-range terms are relatively stronger, and will 
have more overt effects on experimental data. However, if reliable estimates of  
the overall potential energy surfaces are to be obtained from fits to such data, it 
is necessary to minimize the model-dependence of the analysis by defining as 
precisely as possible the asymptotically-dominant dispersion term. This has been 
the problem addressed by the present work. 
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Table 3. Coefficeints C~ ,k defining the recommended polynomial representations of C~(~) (see Eq. 
(10)) for H2 interacting with various atoms. Their units, cm-1 A6, are related to the atomic units of 
the input results from Table 1 by the conversion factor 4819.38157 [49], while the reference length 
appearing in the definition of the expansion variable ~ = (r - ro) /r  o is r o = 0.7666393/~ [44] 

System DSE C~ "0 C~ '1 C~ '2 C~ ,3 C~ '4 C~ ,5 

H-H2 0.22 42236 40120 4080 - 11100 
He-H2 0.20 19298 16080 440 -4254  
N e - H  2 0.86 38900 30500 100 -6000 
Ar-H2 0.84 133000 113600 3000 -23400 
Kr-H2 0.83 189700 165300 5500 -34500 
X e - H  2 0.81 282500 252000 10000 -53000 
L i -H 2 0.72 400700 454000 55000 - 107000 
Be-H 2 0.69 213300 221000 19600 -50000 

--2000 1700 
--340 530 

C~ ,0 C~ ,1 C~ ,2 C~ ,3 C~ ,4 C~ ,5 

H - H  2 0.24 4400 9970 5620 -4250 -2960 
H e - H  2 0.19 1816 3791 1730 - 1655 -940  
N e - H  2 0.45 3720 7720 1300 -2700 
Ar-H2 0.54 13600 29700 5700 - 10400 
K r - H  2 0.57 19700 43600 8600 - 15300 
X e - H  2 0.61 29900 67900 14000 -24000 
Li-H2 0.84 48700 121700 58000 -30000 -15000 
Be-H 2 0.75 24600 59100 22500 - 17000 -5000 
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